Чем отличается процесс дистилляции от ректификации и что лучше. Как отличить дистиллят от ректификата? Что такое дистилляция в химии определение

Различают дистилляцию с конденсацией пара в жидкость (при которой получаемый конденсат имеет усреднённый состав вследствие перемешивания) и дистилляцию с конденсацией пара в твёрдую фазу (при которой в конденсате возникает распределение концентрации компонентов). Продуктом дистилляции является конденсат или остаток (или и то, и другое) – в зависимости от дистиллируемого вещества и целей процесса. Основными деталями дистилляционного устройства являются обогреваемый контейнер (куб) для дистиллируемой жидкости, охлаждаемый конденсатор (холодильник) и соединяющий их обогреваемый паропровод.

История

Применение

Дистилляция применяется в промышленности и в лабораторной практике для разделения и рафинирования сложных веществ: для разделения смесей органических веществ (например, разделение нефти на бензин, керосин, соляр и др.; получение ароматических веществ в парфюмерии; получение алкогольного спирта) и для получения высокочистых неорганических веществ (например, металлов: бериллий, цинк, магний, кадмий и др.).

Теория

В теории дистилляции в первую очередь рассматриваются двухкомпонентные вещества. Действие дистилляции основано на том, что концентрация некоторого компонента в жидкости отличается от его концентрации в паре, образующемся из этой жидкости. Отношение = является характеристикой процесса и называется коэффициентом разделения при дистилляции. Коэффициент разделения зависит от природы разделяемых компонентов и режима дистилляции.

Режимы дистилляции характеризуются температурой испарения и степенью отклонения от фазового равновесия жидкость-пар. Обычно в дистилляционном процессе n=+, где n - число частиц вещества, переходящих в единицу времени из жидкости в пар, - число частиц, возвращающихся в это же время из пара в жидкость, - число частиц, переходящих в это время в конденсат. Отношение /n является показателем отклонения процесса от равновесного. Предельными являются режимы, в которых =0 (равновесное состояние системы жидкость-пар) и =n (режим молекулярной дистилляции).

При =0, когда число частиц, покидающих в единицу времени жидкость, равно числу частиц, возвращающихся в это же время в жидкость, равновесный коэффициент разделения двухкомпонентного вещества может быть выражен через давления и чистых компонентов при температуре процесса: , где и - так называемые коэффициенты активности, учитывающие взаимодействие компонентов в жидкости. Эти коэффициенты имеют температурную и концентрационную зависимости (см. активность (химия)). С понижением температуры значение коэффициента разделения обычно удаляется от единицы, т. е. эффективность разделения при этом увеличивается.

При =n все испаряющиеся частицы переходят в конденсат (режим молекулярной дистилляции). В этом режиме коэффициент разделения , где и - молекулярные массы первого и второго компонентов соответственно. Режим молекулярной дистилляции может применяться в различных дистилляционных способах, включая ректификацию. Обычно молекулярная дистилляция осуществляется в вакууме при низком давлении пара и при близком расположении поверхности конденсации к поверхности испарения (что исключает столкновение частиц пара друг с другом и с частицами атмосферы). В режиме, близком к молекулярной дистилляции, проводится дистилляция металлов. В связи с тем, что коэффициент разделения при молекулярной дистилляции зависит не только от парциальных давлений компонентов, но и от их молекулярных (или атомных) масс, молекулярная дистилляция может применяться для разделения смесей, для которых , - азеотропных смесей, включая смеси изотопов.

Для различных режимов дистилляции выведены уравнения, связывающие содержание второго компонента в конденсате и в остатке с долей перегонки или с долей остатка при заданных условиях процесса и известной начальной концентрации жидкости (, и - масса конденсата и остатка, а также начальная масса дистиллируемого вещества соответственно). Расчёты проводятся в предположении идеального перемешивания дистиллируемой жидкости, а также жидкого конденсата. Также выведены уравнения распределения компонентов в твёрдом конденсате, получаемого дистилляцией с направленным затвердеванием конденсата или зонной дистилляцией. Параметром этих уравнений является коэффициент разделения α для заданных условий дистилляции.

При дистилляции вещества с большой концентрацией компонентов с конденсацией пара в жидкость при несильной зависимости коэффициентов активности компонентов от их концентраций взаимосвязь величин , и , когда используются концентрации в процентах, имеет вид:

Для дистилляции с конденсацией пара в жидкость при малом содержании примеси

Дистилляционные уравнения могут использоваться для описания процессов распределения примесей в других фазовых переходах из фазы с интенсивным перемешиванием (таких как переходы жидкий кристалл-кристалл, жидкий кристалл-жидкость, газ-плазма, а также в переходах, связанных с квантово-механическими состояниями – сверхтекучая жидкость, конденсат Бозе-Эйнштейна) – при подстановке в них соответствующих коэффициентов распределения.

Дистилляция с конденсацией пара в жидкость (простая перегонка, фракционная дистилляция, ректификация)

Простая перегонка - частичное испарение жидкой смеси путём непрерывного отвода и конденсации образовавшихся паров в холодильнике. Полученный конденсат называется дистиллятом, а неиспарившаяся жидкость - кубовым остатком.

Фракционная дистилляция (или дробная перегонка) - разделение многокомпонентных жидких смесей на отличающиеся по составу части - фракции путём сбора конденсата частями с различной летучестью, начиная с первой, обогащенной низкокипящим компонентом. Остаток жидкости обогащён высококипящим компонентом. Для улучшения разделения фракций применяют дефлегматор.

Ректификация - способ дистилляции, при котором часть жидкого конденсата (флегма) постоянно возвращается в куб, двигаясь навстречу пару в контакте с ним. В результате этого примеси, содержащиеся в паре, частично переходят во флегму и возвращаются в куб, при этом чистота пара (и конденсата) повышается (См. ректификация , ректификационная колонна).

Дистилляция с конденсацией пара в твёрдую фазу (с конденсацией пара в градиенте температуры; с направленным затвердеванием конденсата; зонная дистилляция)

Дистилляция с конденсацией пара в градиенте температуры – дистилляционный процесс, в котором конденсация в твёрдую фазу осуществляется на поверхности, имеющей градиент температуры, с многократным реиспарением частиц пара. Менее летучие компоненты осаждаются при более высоких температурах. В результате в конденсате возникает распределение примесей вдоль температурного градиента, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Разделение компонентов пара при реиспарении подчиняется собственным закономерностям. Так, при молекулярной дистиляции соотношение между количествами и осаждённых в конденсаторе первого и второго компонентов, соответственно, выражается равенством:

где и - скорости испарения первого компонента из расплава и с поверхности реиспарения соответственно, и - то же для второго компонента, и - коэффициенты конденсации первого и второго компонентов соответственно, μ – коэффициент, зависящий от поверхности испарения и углов испарения и реиспарения. Реиспарение повышает эффективность очистки от трудноудаляемых малолетучих примесей в 2-5 раз, а от легколетучих - на порядок и более (по сравнению с простой перегонкой). Этот вид дистилляции нашёл применение в промышленном производстве высокочистого бериллия.

Дистилляция с направленным затвердеванием конденсата (дистилляция с вытягиванием дистиллята) – дистилляционный процесс в контейнере удлинённой формы c полным расплавлением дистиллируемого вещества и конденсацией пара в твёрдую фазу по мере вытягивания конденсата в холодную область. Процесс разработан теоретически.

В получаемом конденсате возникает неравномерное распределение примесей, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Процесс является дистилляционным аналогом нормальной направленной кристаллизации. Распределение примеси в конденсате описывается уравнением:

где С – концентрация примеси в дистилляте на расстоянии х от начала, L – высота конденсата при полностью испарившемся дистиллируемом материале.

Зонная дистилляция - дистилляционный процесс в контейнере удлинённой формы c частичным расплавлением рафинируемого вещества в перемещаемой жидкой зоне и конденсацией пара в твёрдую фазу по мере выхода конденсата в холодную область. Процесс разработан теоретически.

При движении зонного нагревателя вдоль контейнера сверху вниз в контейнере формируется твёрдый конденсат с неравномерным распределением примесей, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Процесс может быть повторён многократно, для чего конденсат, полученный в предыдущем процессе, должен быть перемещён (без переворота) в нижнюю часть контейнера на место рафинируемого вещества. Неравномерность распределения примесей в конденсате (т. е. эффективность очистки) растёт с увеличением числа повторений процесса.

Зонная дистилляция является дистилляционным аналогом зонной перекристаллизации. Распределение примесей в конденсате описывается известными уравнениями зонной перекристаллизации с заданным числом проходов зоны – при замене коэффициента распределения k для кристаллизации на коэффициент разделения α для дистилляции. Так, после одного прохода зоны

где С – концентрация примеси в конденсате на расстоянии х от начала конденсата, λ – длина жидкой зоны.

См. также

Литература

  • Девятых Г.Г., Еллиев Ю.Е. Введение в теорию глубокой очистки веществ. - М.: Наука, 1981. - 320 с.
  • Девятых Г.Г., Еллиев Ю.Е. Глубокая очистка веществ. - М.: Высшая школа, 1974. - 180 с.
  • Степин Б.Д., Горштейн И.Г., Блюм Г.З., Курдюмов Г.М., Оглоблина И.П. Методы получения особо чистых неорганических веществ. - Л.: Химия, 1969. - 480 с.
  • Корякин Ю.В., Ангелов И.И. Чистые химические вещества. Руководство по приготовлению неорганических реактивов и препаратов в лабораторных условиях. - М.: Химия, 1974. - с.
  • Беляев А.И. Физико-химические основы очиски металлов и полупроводниковых веществ. - М.: Металлургия, 1973. - 320 с.
  • Пазухин В.А., Фишер А.Я. Разделение и рафинирование металлов в вакууме. - М.: Металлургия, 1969. - 204 с.
  • Иванов В.Е., Папиров И.И., Тихинский Г.Ф., Амоненко В.М. Чистые и сверхчистые металлы (получение методом дистилляции в вакууме). - М.: Металлургия, 1965. - 263 с.
  • Несмеянов А.Н. Давление пара химических элементов. - М.: Издательство АН СССР, 1961 - 320 с.
  • Кравченко А.И. О временной зависимости состава двойного сплава при его разгонке в вакууме // Известия АН СССР. Серия: Металлы. - 1983. - № 3. - С. 61-63.
  • Кравченко А.И. Об уравнениях дистилляции при малом содержании примеси // Вопросы атомной науки и техники, 1990. - № 1 - Серия: «Ядерно-физические исследования» (9). - С. 29-30.
  • Нисельсон Л.Я., Ярошевский А.Г. Межфазовые коэффициенты распределения (Равновесия кристалл-жидкость и жидкость-пар). - М.: Наука, 1992. - 399 с.
  • Kravchenko A.I. Simple substances refining: efficiency of distillation methods // Functional Materials, 2000 - V.7. - N. 2. - P. 315-318.
  • Кравченко А.И. Уравнение распределения примеси в твёрдом дистилляте // Неорганические материалы, 2007. - Т. 43. - № 8. - С. 1021-1022.
  • Кравченко А.И. Эффективность очистки в дистилляционном и кристаллизационном процессах // Неорганические материалы, 2010. - Т. 46. - № 1. - С. 99-101.
  • Кравченко А.И. Дистилляция с вытягиванием дистиллята // Вопросы атомной науки и техники, 2008. - № 1 - Серия: «Вакуум, чистые материалы, сверхпроводники» (17). - С. 18-19.
  • Кравченко А.И. Зонная дистилляция // Вопросы атомной науки и техники, 2011. - № 6 - Серия: «Вакуум, чистые материалы, сверхпроводники» (19). - С. 24-26.
  • Кравченко А.И. О распределении примесей при фазовых переходах из фазы с идеальным перемешиванием // Вопросы атомной науки и техники, 2011. - № 6 - Серия: «Вакуум, чистые материалы, сверхпроводники» (19). - С. 27-29.
  • ГОСТ 2177 (ASTM D86)

Галерея

Химические методы разделения

Процесс, заключающийся в превращении жидкости в пар, который затем снова конденсируется в жидкую форму. Простейшим примером может служить дистилляция воды, когда пар из чайника осаждается в виде капель на холодной поверхности.

Применение и история

Дистилляция используется для отделения жидкостей от нелетучих твердых веществ, как при перегонке спиртных напитков из сброженных материалов, или для разделения двух или более жидкостей с различной температурой кипения, как при производстве бензина, керосина и смазочных масел из нефти. Другие промышленные применения включают переработку таких химических продуктов, как формальдегид и фенол, опреснение морской воды.

Процесс дистилляции, вероятно, использовался еще древними экспериментаторами. Аристотель (384-322 гг. до н. э.) упоминал, что чистую воду можно получить путем испарения морской. Плиний Старший (23-79 гг. н. э.) описал примитивный способ конденсации, при котором масло, получаемое путем нагревания канифоли, собирается на шерсти, помещенной в верхней части перегонного куба.

Простая дистилляция

Большинство методов дистилляции, применяемых в промышленности и лабораторных исследованиях, являются вариациями простой перегонки. В этой базовой технологии используется куб или реторта, в которых жидкость нагревается, конденсатор для охлаждения пара и емкость для сбора дистиллята. При нагреве смеси веществ в первую очередь перегоняется наиболее летучее из них или то, у которого температура кипения минимальна, а затем дистиллируются другие, или не дистиллируются совсем. Такой простой аппарат прекрасно подходит для очистки жидкости, содержащей нелетучие компоненты, и достаточно эффективен для разделения веществ с разной точкой кипения. Для лабораторного использования части аппарата обычно делают из стекла и соединяют их пробками, резиновыми шлангами или стеклянными трубками. В промышленных масштабах оборудование делают из металла или керамики.

Фракционная дистилляция

Метод, называемый фракционной, или дифференциальной, дистилляцией, был разработан для нефтепереработки, потому что простая перегонка для разделения жидкостей, температура кипения которых мало отличается, неэффективна. При этом пары многократно конденсируются и испаряются в изолированной вертикальной емкости. Особую роль здесь играют сухопарники, фракционные колонны и конденсаторы, позволяющие вернуть некоторую часть конденсата назад в куб. Цель состоит в том, чтобы добиться тесного контакта между поднимающимися разными фазами смеси, чтобы только самые летучие фракции в форме пара достигали приемника, а остальное возвращалось в виде жидкости в сторону куба. Очищение летучих компонентов в результате контакта между такими противотоками называется ректификацией, или обогащением.

Многократная дистилляция

Данный метод еще называют многостадийным мгновенным испарением. Это еще один вид простой перегонки. С его помощью производится, например, дистилляция воды на крупных коммерческих опреснительных установках. Преобразование жидкости в пар не требует нагрева. Она просто попадает из емкости с высоким атмосферным давлением в емкость с более низким. Это приводит к быстрому испарению, сопровождающемуся конденсацией пара в жидкость.

Вакуумная перегонка

В одной из разновидностей процесса с пониженным давлением для создания вакуума используется вакуумный насос. Этот метод, называемый «вакуумная дистилляция», иногда применяется при работе с веществами, которые обычно кипят при высоких температурах или разлагаются при кипении в нормальных условиях.

Вакуумные насосы создают в колонне давление, которое значительно ниже атмосферного. В дополнение к ним используются вакуумные регуляторы. Тщательный контроль параметров очень важен, поскольку эффективность разделения зависит от различия в относительной летучести при данной температуре и давлении. Изменение этого параметра может негативно повлиять на ход процесса.

В вакууме, хорошо знают на нефтеперерабатывающих заводах. Обычные методы перегонки отделяют легкие углеводороды и примеси от тяжелых углеводородов. Остаточный продукт подвергают вакуумной дистилляции. Это позволяет отделить высококипящие углеводороды, такие как масла и воски, при невысоких температурах. Метод также применяется при разделении чувствительных к нагреву органических химических соединений и для восстановления органических растворителей.

Что такое дистилляция паром?

Паровая перегонка является альтернативным методом перегонки при температурах ниже нормальной точки кипения. Она применяется, когда дистиллируемое вещество не смешивается и химически не реагирует с водой. Примерами таких материалов являются жирные кислоты и соевое масло. В ходе перегонки в жидкость подается пар, который нагревает ее и вызывает испарение.

Дистилляция в насадочной колонне

Хотя насадочные колонны чаще всего применяются для абсорбции, они также используются для перегонки парожидкостных смесей. Такая конструкция обеспечивает большую площадь контактной поверхности, что повышает эффективность системы. Другое название такой конструкции - ректификационная колонна.

Принцип работы заключается в следующем. Сырьевая смесь компонентов с разной волатильностью подается в центр колонны. Жидкость стекает вниз через насадку, а пар движется вверх. Смесь в нижней части резервуара попадает в подогреватель и выходит из него вместе с паром. Газ устремляется вверх через насадку, подхватывая наиболее летучие компоненты жидкости, выходит из колонны и попадает в конденсатор. После сжижения продукт поступает в сборник флегмы, где он разделяется на дистиллят и фракцию, используемую для орошения.

Различная концентрация приводит к тому, что менее летучие компоненты переходят из паровой фазы в жидкую. Насадка увеличивает продолжительность и площадь контакта, что повышает эффективность разделения. На выходе пар содержит максимальное количество летучих компонентов, в то время как в жидкости их концентрация минимальна.

Насадки заполняются в навал и пакетами. Форма наполнителя может быть либо случайной, либо геометрически структурированной. Его делают из такого как глина, фарфор, пластик, керамика, металл или графит. Наполнитель, как правило, имеет размеры от 3 до 75 мм и отличается большой площадью поверхности, контактирующей с парожидкостной смесью. Преимущество заполнения в навал заключается в большой пропускной способности, стойкости к большим давлениям и низкой стоимости.

Металлические наполнители имеют высокую прочность и хорошую смачиваемость. Керамические обладают еще более высокой смачиваемостью, но они не такие прочные. Пластиковые достаточно прочны, но плохо смачиваются при низкой скорости потока. Поскольку керамические наполнители устойчивы к коррозии, они используются при повышенных температурах, которые пластик не выдерживает.

Пакетные насадки представляют собой структурированную сетку, размеры которой соответствуют диаметру колонны. Обеспечивают наличие длинных каналов для потоков жидкости и пара. Они дороже, но позволяют снизить перепады давления. Пакетным насадкам отдается предпочтение при невысокой скорости потока и в условиях низкого давления. Обычно их делают из древесины, листового металла или тканой сетки.

Применяются для восстановления растворителей и в нефтехимической промышленности.

Дистилляция в ректификационной колонне

Наиболее широкое распространение получили колонны тарельчатого типа. Количество тарелок зависит от желаемой чистоты и сложности разделения. Оно влияет на то, какой высоты будет ректификационная колонна.

Принцип работы ее следующий. Смесь подается посредине высоты колонны. Разница в концентрации приводит к тому, что менее летучие компоненты переходят из потока пара в поток жидкости. Газ, выходящий из конденсатора, содержит наиболее летучие вещества, а менее испаряемые выходят через нагреватель в поток жидкости.

Геометрия тарелок в колонне влияет на степень и тип контакта между разными фазовыми состояниями смеси. Конструктивно они выполняются ситчатыми, клапанными, колпачковыми, решетчатыми, каскадными и т. д. Ситчатые тарелки, в которых имеются отверстия для пара, используются для обеспечения высокой производительности при низких затратах. Более дешевые клапанные тарелки, в которых отверстия снабжены открывающими и закрывающими клапанами, склонны к засорению из-за скопления на них материала. Колпачковые снабжены колпачками, позволяющими пару проходить через жидкость сквозь крошечные отверстия. Это самая передовая и дорогая технология, эффективная при низких скоростях потока. Жидкость течет от одной тарелки к другой вниз по сливным вертикальным трубам.

Тарельчатые колонны часто используются для восстановления растворителей из технологических отходов. Также они применяются для восстановления метанола при операции сушки. В качестве жидкого продукта выходит вода, а летучие органические отходы переходят в паровую фазу. Вот что такое дистилляция в ректификационной колонне.

Криогенная перегонка

Криогенная дистилляция заключается в применении общих методов перегонки к газам, охлажденным до жидкого состояния. Система функционирует при температурах ниже -150 °С. Для этого используются теплообменники и змеевики. Вся конструкция называется криогенным блоком. поступают в блок и перегоняются при очень низких температурах. Колонны криогенной дистилляции могут быть насадочными и пакетными. Пакетный дизайн более предпочтителен, поскольку насыпной материал менее эффективен при низких температурах.

Одним из основных применений криогенной дистилляции является разделение воздуха на составляющие его газы.

Экстрактивная перегонка

В экстрактивной ректификации используются дополнительные соединения, которые действуют как растворитель для изменения относительной летучести одного из компонентов смеси. В экстрактивную колонну к разделяемым веществам добавляется растворитель. Компонент сырьевого потока, который требуется извлечь, соединяется с растворителем и выходит в жидкой фазе. Другой компонент испаряется и выходит в дистиллят. Вторая перегонка в другой колонне позволяет отделить вещество от растворителя, который затем возвращается на предыдущий этап, чтобы повторить цикл.

Экстрактивная ректификация применяется для разделения соединений с близкими температурами кипения и азеотропных смесей. Экстрактивная ректификация не так широко распространена в промышленности, как обычная дистилляция, из-за сложности конструкции. Примером является процесс получения целлюлозы. отделяет целлюлозу от лигнина, а вторая перегонка позволяет получить чистое вещество.

Различают дистилляцию с конденсацией пара в жидкость (при которой получаемый дистиллят имеет усреднённый состав вследствие перемешивания) и дистилляцию с конденсацией пара в твёрдую фазу (при которой в конденсате возникает распределение концентрации компонентов). Продуктом дистилляции является дистиллят или остаток (или и то, и другое) - в зависимости от дистиллируемого вещества и целей процесса. Основными деталями дистилляционного устройства являются обогреваемый контейнер (куб) для дистиллируемой жидкости, охлаждаемый конденсатор (холодильник) и соединяющий их обогреваемый паропровод.

Энциклопедичный YouTube

    1 / 4

    ✪ 7.4.Дистилляция часть-4 вторичная дробная дистилляция

    ✪ Вакуумная дистилляция Часть 1

    ✪ 7.2. Дистилляция часть-2 первичная дистилляция

    ✪ 7.3. Дистилляция часть-3 первичная дистилляция

    Субтитры

История

Первые сведения о дистилляции относятся к I веку и упоминаются в работах греческих алхимиков в Александрии (Египет) . В XI веке, у Авиценны , дистилляция упоминается как метод получения эфирных масел . C середины XIX века разрабатывается ректификация .

Применение

Теория дистилляции

В теории дистилляции в первую очередь рассматривается разделение смесей двух веществ . Принцип дистилляции основан на том, что концентрация некоторого компонента в жидкости отличается от его концентрации C 2 {\displaystyle C_{2}} в паре этой жидкости. Отношение β {\displaystyle \beta } = C 2 / C 1 {\displaystyle C_{2}/C_{1}} является характеристикой процесса и называется коэффициентом разделения (или распределения) при дистилляции. (Также коэффициентом разделения при дистилляции называют величину α=1/β). Коэффициент разделения зависит от природы разделяемых компонентов и условий дистилляции. В зависимости от условий дистилляции различают идеальный (определяемый только парциальными давлениями паро́в чистых компонентов), равновесный (когда число частиц, покидающих в единицу времени жидкость, равно числу частиц, возвращающихся в это же время в жидкость) и эффективный коэффициенты разделения. Практически дистилляция веществ сильно зависит от интенсивности перемешивания жидкости, а также от взаимодействия примесей с основным компонентом и с другими примесными компонентами с образованием соединений (в связи с чем дистилляция считается физико-химическим процессом). Эффективный коэффициент разделения смеси «основное вещество - примесь» может на несколько порядков отличаться от идеального коэффициента разделения.

Режимы дистилляции характеризуются температурой испарения и степенью отклонения от фазового равновесия жидкость-пар. Обычно в дистилляционном процессе n=+, где n - число частиц вещества, переходящих в единицу времени из жидкости в пар, n 1 {\displaystyle n_{1}} - число частиц, возвращающихся в это же время из пара в жидкость, n c {\displaystyle n_{c}} - число частиц, переходящих в это время в конденсат. Отношение n c {\displaystyle n_{c}} /n является показателем отклонения процесса от равновесного. Предельными являются режимы, в которых n c {\displaystyle n_{c}} =0 (равновесное состояние системы жидкость-пар) и n c {\displaystyle n_{c}} =n (режим молекулярной дистилляции).

Идеальный коэффициент разделения двухкомпонентного вещества может быть выражен через давления p 1 0 {\displaystyle p_{1}^{0}} и p 2 0 {\displaystyle p_{2}^{0}} чистых компонентов при температуре процесса: β i {\displaystyle \beta _{i}} = p 2 / p 1 {\displaystyle p_{2}/p_{1}} . С учётом коэффициентов активности компонентов γ 1 {\displaystyle \gamma _{1}} и γ 2 {\displaystyle \gamma _{2}} , отражающих взаимодействие компонентов в жидкости, равновесный коэффициент β = γ 2 p 2 0 / γ 1 p 1 0 {\displaystyle \beta =\gamma _{2}p_{2}^{0}/\gamma _{1}p_{1}^{0}} . Коэффициенты активности имеют температурную и концентрационную зависимости (см. активность (химия)). С понижением температуры значение коэффициента разделения обычно удаляется от единицы, то есть эффективность разделения при этом увеличивается.

При n c {\displaystyle n_{c}} =n все испаряющиеся частицы переходят в конденсат (режим молекулярной дистилляции). В этом режиме коэффициент разделения β m = β M 1 / M 2 {\displaystyle \beta _{m}=\beta {\sqrt {M_{1}}}/{\sqrt {M_{2}}}} , где M 1 {\displaystyle M_{1}} и M 2 {\displaystyle M_{2}} - молекулярные массы первого и второго компонентов соответственно. Определение молекулярного режима дистилляции возможно по величине N=h/(Kλ), где h - расстояние от испарителя до конденсатора, λ - длина свободного пробега молекул дистиллируемого вещества, K - константа, зависящая от конструкции аппарата. При N<0,25 наблюдается молекулярное испарение, при N>4 между жидкостью и паром устанавливается динамическое равновесие, а при других значениях N испарение имеет промежуточный характер. Режим молекулярной дистилляции может применяться в различных дистилляционных способах, включая ректификацию . Обычно молекулярная дистилляция осуществляется в вакууме при низком давлении пара и при близком расположении поверхности конденсации к поверхности испарения (что исключает столкновение частиц пара друг с другом и с частицами атмосферы). В режиме, близком к молекулярной дистилляции, проводится дистилляция металлов. В связи с тем, что коэффициент разделения при молекулярной дистилляции зависит не только от парциальных давлений компонентов, но и от их молекулярных (или атомных) масс, молекулярная дистилляция может применяться для разделения смесей, для которых β=1, - азеотропных смесей , включая смеси изотопов .

Для различных режимов дистилляции выведены уравнения, связывающие содержание второго компонента в конденсате C / C 0 {\displaystyle C/C_{0}} и в остатке с долей перегонки G / G 0 {\displaystyle G/G_{0}} или с долей остатка при заданных условиях процесса и известной начальной концентрации жидкости ( G {\displaystyle G} , G 1 {\displaystyle G_{1}} и G 0 {\displaystyle G_{0}} - масса конденсата и остатка, а также начальная масса дистиллируемого вещества соответственно). Расчёты проводятся в предположении идеального перемешивания дистиллируемой жидкости, а также жидкого конденсата. Также выведены уравнения распределения компонентов в твёрдом конденсате, получаемого дистилляцией с направленным затвердеванием конденсата или зонной дистилляцией. Параметром этих уравнений является коэффициент разделения β для заданных условий дистилляции.

При дистилляции вещества с большой концентрацией компонентов с конденсацией пара в жидкость при несильной зависимости коэффициентов активности компонентов от их концентраций взаимосвязь величин G 1 / G 0 {\displaystyle G_{1}/G_{0}} , C 1 {\displaystyle C_{1}} и C 0 {\displaystyle C_{0}} , когда используются концентрации в процентах, имеет вид:

L g G 1 G 0 = 1 β − 1 l g C 1 C 0 − β β − 1 l g 100 − C 1 100 − C 0 {\displaystyle lg{\tfrac {G_{1}}{G_{0}}}={\tfrac {1}{\beta -1}}lg{\tfrac {C_{1}}{C_{0}}}-{\tfrac {\beta }{\beta -1}}lg{\tfrac {100-C_{1}}{100-C_{0}}}} .

Для дистилляции с конденсацией пара в жидкость при малом содержании примеси

C / C 0 = 1 − (1 − G / G 0) β G / G 0 {\displaystyle C/C_{0}={\tfrac {1-(1-G/G_{0})^{\beta }}{G/G_{0}}}} ,

C 1 / C 0 {\displaystyle C_{1}/C_{0}} = (G 1 / G 0) β − 1 {\displaystyle (G_{1}/G_{0})^{\beta -1}} ,

где β - отношение концентраций примеси в паре и в жидкости.

Приведённые дистилляционные уравнения описывают не только процессы равновесия компонентов в системах газ-жидкость, но и при описании распределения компонентов двух контактирующих фаз при интенсивном перемешивании (например, переходы жидкий кристалл-кристалл, жидкий кристалл-жидкость, газ-плазма, а также в переходах, связанных с квантово-механическими состояниями - сверхтекучая жидкость , конденсат Бозе - Эйнштейна) - при подстановке в них соответствующих коэффициентов разделения. Зачастую они пригодны для теоретического описания сублимации - прежде всего, при температуре вблизи температуры плавления.

Дистилляция с конденсацией пара в жидкость

Простая перегонка - частичное испарение жидкой смеси путём непрерывного отвода и конденсации образовавшихся паров в холодильнике. Полученный конденсат называется дистиллятом, а неиспарившаяся жидкость - кубовым остатком.

Фракционная дистилляция (или дробная перегонка) - разделение многокомпонентных жидких смесей на отличающиеся по составу части, фракции, путём сбора конденсата частями с различной летучестью, начиная с первой, обогащенной низкокипящим компонентом. Остаток жидкости обогащён высококипящим компонентом. Для улучшения разделения фракций применяют дефлегматор .

Ректификация - способ дистилляции, при котором часть жидкого конденсата (флегма) постоянно возвращается в куб, двигаясь навстречу пару в колонне . В результате этого примеси, содержащиеся в паре, частично переходят во флегму и возвращаются в куб, при этом чистота пара (и конденсата) повышается.

Дистилляция с конденсацией пара в твёрдую фазу

Дистилляция с конденсацией пара в градиенте температуры - дистилляционный процесс, в котором конденсация в твёрдую фазу осуществляется на поверхности, имеющей градиент температуры, с многократным реиспарением частиц пара. Менее летучие компоненты осаждаются при более высоких температурах. В результате в конденсате возникает распределение примесей вдоль температурного градиента, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Разделение компонентов пара при реиспарении подчиняется собственным закономерностям. Так, при молекулярной дистилляции соотношение между количествами Q 1 {\displaystyle Q_{1}} и Q 2 {\displaystyle Q_{2}} осаждённых в конденсаторе первого и второго компонентов, соответственно, выражается равенством:

Q 1 / Q 2 = (μ η 1 W 1 0 − W 1) / (μ η 2 W 2 0 − W 2) {\displaystyle Q_{1}/Q_{2}=(\mu \eta _{1}W_{1}^{0}-W_{1})/(\mu \eta _{2}W_{2}^{0}-W_{2})} ,

где W 1 0 {\displaystyle W_{1}^{0}} и W 1 {\displaystyle W_{1}} - скорости испарения первого компонента из расплава и с поверхности реиспарения соответственно, W 2 0 {\displaystyle W_{2}^{0}} и W 2 {\displaystyle W_{2}} - то же для второго компонента, η 1 {\displaystyle \eta _{1}} и η 2 {\displaystyle \eta _{2}} - коэффициенты конденсации первого и второго компонентов соответственно, μ - коэффициент, зависящий от поверхности испарения и углов испарения и реиспарения. Реиспарение повышает эффективность очистки от трудноудаляемых малолетучих примесей в 2-5 раз, а от легколетучих - на порядок и более (по сравнению с простой перегонкой). Этот вид дистилляции нашёл применение в промышленном производстве высокочистого бериллия.

Дистилляция с направленным затвердеванием конденсата (дистилляция с вытягиванием дистиллята) - дистилляционный процесс в контейнере удлинённой формы c полным расплавлением дистиллируемого вещества и конденсацией пара в твёрдую фазу по мере вытягивания конденсата в холодную область. Процесс разработан теоретически.

В получаемом конденсате возникает неравномерное распределение примесей, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Процесс является дистилляционным аналогом нормальной направленной кристаллизации. Распределение примеси в конденсате описывается уравнением:

C / C 0 = β (1 − x / L) β − 1 {\displaystyle C/C_{0}=\beta (1-x/L)^{\beta -1}} ,

где С - концентрация примеси в дистилляте на расстоянии х от начала, L - высота конденсата при полностью испарившемся дистиллируемом материале.

Зонная дистилляция - дистилляционный процесс в контейнере удлинённой формы c частичным расплавлением рафинируемого вещества в перемещаемой жидкой зоне и конденсацией пара в твёрдую фазу по мере выхода конденсата в холодную область. Процесс разработан теоретически.

При движении зонного нагревателя вдоль контейнера сверху вниз в контейнере формируется твёрдый конденсат с неравномерным распределением примесей, и наиболее чистая часть конденсата может быть выделена в качестве продукта. Процесс может быть повторён многократно, для чего конденсат, полученный в предыдущем процессе, должен быть перемещён (без переворота) в нижнюю часть контейнера на место рафинируемого вещества. Неравномерность распределения примесей в конденсате (то есть эффективность очистки) растёт с увеличением числа повторений процесса.

Зонная дистилляция является дистилляционным аналогом зонной перекристаллизации. Распределение примесей в конденсате описывается известными уравнениями зонной перекристаллизации с заданным числом проходов зоны - при замене коэффициента распределения k для кристаллизации на коэффициент разделения α для дистилляции. Так, после одного прохода зоны

C / C 0 = 1 − (1 − β) e x p (− β {\displaystyle C/C_{0}=1-(1-\beta)exp(-\beta } x / λ) {\displaystyle x/\lambda)} ,

где С - концентрация примеси в конденсате на расстоянии х от начала конденсата, λ - длина жидкой зоны.

Девятых Г. Г., Еллиев Ю. Е. Введение в теорию глубокой очистки веществ. - М.: Наука, 1981. - 320 с.
  • Девятых Г. Г., Еллиев Ю. Е. Глубокая очистка веществ. - М.: Высшая школа, 1990. - 192 с.
  • Емельянов В. С., Евстюхин А. И., Шулов В. А. Теория процессов получения чистых металлов, сплавов и интерметаллидов. - М.: Энергоатомиздат, 1983. - 144 с.
  • Жаров В. Т., Серафимов Л. А. Физико-химические основы дистилляции и ректификации. - Л.: Химия, 1975. - 240 с.
  • Степин Б. Д., Горштейн И. Г., Блюм Г. З., Курдюмов Г. М., Оглоблина И. П. Методы получения особо чистых неорганических веществ. - Л.: Химия, 1969. - 480 с.
  • Сийрде Э.К., Теаро Э.Н., Миккал В.Я. Дистилляция. - Л.: Химия, 1971. - 216 с.
  • Калашник О.Н., Нисельсон Л.А. Очистка простых веществ дистилляцией с гидротермальным окислением примесей // Высокочистые вещества, 1987. - № 2. - С. 74-78.
  • Корякин Ю. В., Ангелов И. И. Чистые химические вещества. Руководство по приготовлению неорганических реактивов и препаратов в лабораторных условиях. - М.: Химия, 1974. - с.
  • Беляев А. И. Физико-химические основы очиски металлов и полупроводниковых веществ. - М.: Металлургия, 1973. - 224 с.
  • Нисельсон Л. А., Лапин Н. В., Бежок В. С. Определение относительных летучестей примесей в жидком германии // Высокочистые вещества, 1989. - N. 6. - С. 33-38 [Содержатся сведения о коэффициенте f скорости испарения вещества - со ссылкой на: Borrows G. // Trans. Inst. Chem. Eng., 1954. - V. 32. - P. 23.]
  • Пазухин В. А., Фишер А. Я. Разделение и рафинирование металлов в вакууме. - М.: Металлургия, 1969. - 204 с.
  • Иванов В. Е., Папиров И. И., Тихинский Г. Ф., Амоненко В. М. Чистые и сверхчистые металлы (получение методом дистилляции в вакууме). - М.: Металлургия, 1965. - 263 с.
  • Несмеянов А. Н. Давление пара химических элементов. - М.: Издательство АН СССР, 1961-320 с.
  • Кравченко А. И. О временной зависимости состава двойного сплава при его разгонке в вакууме // Известия АН СССР. Серия: Металлы. - 1983. - № 3. - С. 61-63.
  • Кравченко А. И. Об уравнениях дистилляции при малом содержании примеси // Вопросы атомной науки и техники, 1990. - № 1 - Серия: «Ядерно-физические исследования» (9). - С. 29-30.
  • Нисельсон Л. Я., Ярошевский А. Г. Межфазовые коэффициенты распределения (Равновесия кристалл-жидкость и жидкость-пар). - М.: Наука, 1992. - 399 с.
  • Kravchenko A.I. Simple substances refining: efficiency of distillation methods // Functional Materials, 2000 - V.7. - N. 2. - P. 315-318.
  • Кравченко А. И. Уравнение распределения примеси в твёрдом дистилляте // Неорганические материалы, 2007. - Т. 43. - № 8. - С. 1021-1022.
  • Кравченко А. И. Эффективность очистки в дистилляционном и кристаллизационном процессах // Неорганические материалы, 2010. - Т. 46. - № 1. - С. 99-101.
  • Кравченко А. И. Дистилляция с вытягиванием дистиллята // Вопросы атомной науки и техники, 2008. - № 1 - Серия: «Вакуум, чистые материалы, сверхпроводники» (17). - С. 18-19.
  • Кравченко А. И. Зонная дистилляция // Вопросы атомной науки и техники, 2011. - № 6 - Серия: «Вакуум, чистые материалы, сверхпроводники» (19). - С. 24-26.
  • Кравченко А. И. Разработка перспективных схем зонной дистилляции // Перспективные материалы, 2014. - №7. - С. 68-72. .
  • Кравченко А. И. О распределении примесей при фазовых переходах из фазы с идеальным перемешиванием // Вопросы атомной науки и техники, 2011. - № 6 - Серия: «Вакуум, чистые материалы, сверхпроводники» (19). - С. 27-29.
  • Кравченко А. И. Зависимость эффективного коэффициента разделения в некоторых металлических системах основа-примесь от степени перегонки // Неорганические материалы, 2015. - Т. 51. - № 2. - С. 146-147.
  • Распределение примесей в сублимате магния // Неорганические материалы, 2015. - Т. 51. - № 6. - С. 625-627.
  • Кириллов Ю. П., Кузнецов Л. А., Шапошников В. А. , Чурбанов М. Ф. Влияние диффузии на глубину очистки веществ дистилляцией // Неорганические материалы, 2015. - Т. 51. - № 11. - С. 1177-1189.
  • Кравченко А. И. Соотношение между эффективным и идеальным коэффициентами разделения при дистилляции и сублимации // Неорганические материалы, 2016. - Т. 52. - № 4. - С. 423-430.
  • Кириллов Ю. П., Шапошников В. А. , Кузнецов Л. А., Ширяев В. С. , Чурбанов М. Ф. Моделирование испарения жидких веществ и конденсации их паров при дистилляции // Неорганические материалы, 2016. - Т. 52. - № 11. - С. 1256-1261.
  • Кравченко А. И. О температурной зависимости идеального коэффициента разделения в системах с близкой летучестью компонентов // Вопросы атомной науки и техники, 2016. - № 1 - Серия: «Вакуум, чистые материалы, сверхпроводники» (21). - С. 14-16.
  • Папиров И. И., Кравченко А. И., Мазин А. И., Шиян А. В., Вирич В. Д. Распределения примесей в сублиматах магния // Вопросы атомной науки и техники, 2016. - № 1 - Серия: «Вакуум, чистые материалы, сверхпроводники» (21). - С. 21-22.
  • Жуков А.И., Кравченко А.И. Расчёт сублимации с учётом диффузии примеси // Неорганические материалы, 2017. - Т. 53. - № 6. - С. 662-668.
  • Кравченко А. И. О применимости идеального коэффициента разделения для расчёта дистилляции и сублимации // Вопросы атомной науки и техники, 2018. - № 1 - Серия: «Вакуум, чистые материалы, сверхпроводники» (22). - С. _.
  • Кравченко А. И. О рафинировании простых веществ дистилляцией с добавочным компонентом // Вопросы атомной науки и техники, 2018. - № 1 - Серия: «Вакуум, чистые материалы, сверхпроводники» (22). - С. _.
  • ГОСТ 2177 (ASTM D86)
  • Дистилляция – способ разделения и рафинирования различных веществ с помощью перегонки и выпаривания. Чаще всего этому процессу поддаются вещества, состоящие из двух компонентов. Известные примеры: разделение нефти, дистилляция спирта , создание духов. Ученые различают дистилляцию с получением жидких и твердых продуктов – остаток или конденсат. До 10 века дистиллировали только эфирные масла.

    Что собой представляет дистилляция алкоголя

    Дистилляцию используют в промышленности для разделения различных жидкостей. Дистилляция алкоголя – это отделение этилового спирта от спиртосодержащих продуктов. В результате этого процесса испаряются летучие соединения из смеси, которая прошла процесс брожения.

    Основной процесс построен на двух этапах:

    1. Жидкость преобразуется в пар с помощью процесса дистилляции.
    2. Полученный пар конденсируется. После процесса охлаждения снова становится жидкостью.

    Спирт имеет свойство быстро испаряться, что обусловлено его температурой кипения +78С. Вода испаряется медленнее, ведь закипает при 100С. После испарения происходит процесс конденсации.

    На самом деле, осуществить дистилляцию можно и в домашних условиях. По-простому это называется «перегонка». А на выходе из аппарата выходит самогон. Людей, которые изготавливают и употребляют его немало. Однако это делать не рекомендуется. Ранее он не использовался для употребления в организм, а создавался в качестве горючего вещества.

    Внимание! Самогон – это крепкий напиток, который имеет в составе вредные для организма человека вещества, смолы, хотя он и считается высококачественным продуктом.

    Бренди, текила и абсент по сути тот же самогон. После процесса дистилляции их наделили ароматом и привкусом. Для изготовления этого напитка можно использовать не только брагу на дрожжах. В качестве сырья могут использоваться фрукты, крупы (гречка, рис), каштан, даже томатная паста и картофель!

    В домашней обстановке можно изготовить не только самогон, но даже абсент

    Несмотря на то, что самогон опасен для здоровья, в России его изготовление издавна было прихотью аристократов. А первый рецепт датирован 6 веком!

    Сегодня у любого из нас есть возможность получать самогон в домашних условиях, ведь аппарат для его производства очень прост и состоит из трех частей:

    • емкость для сырья. В колбообразную емкость заливают сырьевой продукт. Процесс начинается с ее нагрева, для чего внизу располагается нагревательный элемент. Для контролирования процесса нужно знать температуру. На колбу устанавливается термометр, за показаниями которого следует следить;
    • вторая деталь – трубка, которая соединяет первую емкость со второй. Для того чтобы происходил процесс охлаждения, она направлена вниз. Так пар стекает уже в жидком состоянии в другую емкость.
    • спирт оседает в третьем отсеке аппарата. Эта колба по размеру меньше первой и расположена ниже.

    Процесс нужно остановить в тот момент, когда спирт испарится, а в емкости останется только вода.

    Виды дистилляции

    Дистилляцию алкоголя разделяют на несколько видов:

    • простая;
    • фракционная;
    • ректификация.

    Простая перегонка является первой частью фракционной. А вот последний вид имеет значительные отличия от первых двух, ведь на выходе получается продукт, который имеет не только более качественный состав и крепость, его также используют для приготовления других алкогольных напитков.

    Простая

    Метод простой дистилляции раньше использовался не для производства алкоголя. Древние Египтяне делали краску из порченных виноградных плодов, а также других фруктов.

    Процесс состоит из нескольких этапов:

    1. Перегонка спирта начинается с приготовления браги. Самый популярный рецепт включает в себя дрожжи и сахарный сироп. Растворенные дрожжи (растворяют в воде не более 30С) с сахарным сиропом настаивают около 7 дней.
    2. Полученную бражку через неделю вливают в аппарат для перегонки.
    3. В первой емкости происходит процесс испарения.
    4. Пар конденсируется и переходит в жидкое состояние.

    Фракционная

    Вид дистилляции, который включает в себя пару этапов, называется фракционный.

    В процессе перегонки спирт разделяют на фракции, которые далее разливают отдельно. В дистилляции этанола первую и третью фракции утилизируют.

    В первой части процесса образуется дистиллят, который называют «голова».

    Важно! Эта часть полученной жидкости имеет высокую концентрацию и содержит в себе вредные вещества. Основная характеристика «головы» неприятный резкий запах. Получить повреждения можно не только при приеме такой жидкости во внутрь, но и при попадании ее на кожу в виде химического ожога. Такую жидкость не используют даже в быту, ее стоит сразу же вылить.

    При перегонке спирт необходимо разделять на фракции

    Вторая фракция не имеет такого запаха, ее называют «телом». Так как на выходе образуется высококачественный самогон, на этапе его прогона следует быть особо внимательным. Температура при прогоне должна быть не выше 95С. Образуется жидкость с крепостью 35-45%, которая не содержит вредных компонентов и не несет вред здоровью.

    Все примеси остаются в последней фракции «хвост». Как и голова, она имеет неприятный сильный запах. Если третья фракция попадет в среднюю, то вся жидкость окажется непригодной для употребления. Поэтому нужно обязательно следить за процессом перегонки и быть осторожным.

    Последняя фракция опасна, но повторный ее прогон допускается. А вот «голову» используют максимум для розжига дров.

    Преимущества многоступенчатой дистилляции

    В процессе многоступенчатой дистилляции одна часть смеси конденсируется, а другая попадает в другую часть аппарата, где процесс конденсации происходит частично.

    Аппарат для многоступенчатой дистилляции – целая система:

    1. Пара сухопарников;
    2. 4-15 барботеров.

    Многоступенчатая дистилляция является более сложным процессом

    Эти детали соединяются перегонным кубом и холодильником.

    Мокропарник или Барботер – герметичная емкость, в крышке которой находятся два отверстия. Длинная трубка вставляется в первое и лишь немного не доходит до дна. Второе отверстие с более короткой трубкой.

    Сухопарник – аналогичная часть. Однако длина обеих трубок одинакова.

    Принцип работы состоит в следующем: после нагревания браги ее пары по трубе попадают на дно мокропарника. Здесь происходит конденсация. Тут же часть спирта снова переходит в состояние газа, и выходит из емкости сквозь короткую трубу.

    Подобный процесс проходит в сухопарнике. Но из-за короткой трубы спирт в газообразном состоянии не проходит сквозь жидкость. На это уходит меньше времени.

    Из барботера спирт в газообразном состоянии попадает в охладитель. В результате получается 90% самогон.

    Многие ошибочно считают, что такой метод помогает производить такой же качественный продукт, как и ректификация на производстве. Но это мнение ошибочно. При неправильной организации процесса на выходе может образоваться более опасная жидкость, чем при обычной перегонке. Однако сторонников многоступенчатой дистилляции много, и это оправдывается рядом преимуществ:

    • при соблюдении правил дистилляции качество выходящего продукта будет значительно выше обычного самогона;
    • крепость продукта такого метода выше.

    Что собой представляет ректификация алкоголя

    Ректификационная колонна

    Ректификационные колонны были созданы в 1867 году, и основной их целью было производство 96% спирта. Позже стали производить «столовое вино», которое позже называлось водкой.

    Производится, когда требуется более качественный спирт. Основная ее особенность – спирт такого способа перегонки более качественный и используется в производстве крепких напитков. Количество примесей ректификата меньше чем у простого самогона.

    Основа процесса – разделение смеси способом теплообмена.

    Произвести такой процесс в домашних условиях невозможно, так как он предполагает использование специального аппарата. Такой способ перегонки имеет больше этапов:

    • колба с самогоном нагревается и доводится до кипения;
    • образуется пар и поднимается в дефлегматор;
    • охлаждение водой вызывает конденсацию;
    • полученная жидкость стекает в колбу;
    • процесс теплообмена образует пар и жидкость, которая опускается. Они взаимодействуют постоянно.
    • в результате этого вверху вещества переходят в конденсат и стекают.

    Существует ошибочное мнение, что ректификация – это просто повторная дистилляция. Но на деле это не так. Важно помнить, что для ректификации не используют брагу. После дистилляции образуется спирт 40%, который используют для дальнейшей ректификации.

    Какой метод лучше: дистилляция или ректификация

    Однозначно ответить на вопрос, «Какой способ лучше?» сложно, ведь каждый метод имеет свои недостатки и преимущества. Выбор способа перегонки зависит от того, какой продукт должен получиться на выходе.

    Конечно, ректификация обещает более качественный напиток, который не так опасен для здоровья. Но методы приготовления некоторых спиртных напитков заставляют прибегать к простому способу дистилляции. Это объясняется особенностями методов перегонки.

    Ректификация лишает конечный продукт запаха и вкуса его первоначальной основы. Он отлично подойдет для водки. В некоторых случаях это неуместно. Так, если производят коньяк, используют дистилляцию, ведь этот алкогольный напиток должен иметь запах сырья, из которого изготовлен, его нельзя лишить аромата и вкусовых качеств.

    Не менее важным остается дальнейшее хранение алкоголя. Если он произведен способом дистилляции, то перенесет хранение в деревянной бочке. Ректификация предусматривает только дальнейшее разведение. Продукты дистилляции поддаются хранению практически в любых условиях. Это помогает в производстве коньяка.

    Перегонка методом дистилляции требует меньших затрат. Во-первых, она производится в один этап и не заберет много усилий, времени. В то время как ректификация предполагает два процесса, что увеличивает расход и время. Во-вторых, аппарат для простой перегонки имеет более простую конструкцию, а также более доступен. Для того чтобы совершить процесс ректификации, нужно пройти первичную дистилляцию.

    Ректификация и дистилляция – два совершенно разных способа изготовления спиртовой жидкости, несмотря на их схожесть. Конечный продукт этих процессов разный и используется в разных целях.

    Основные виды концентрирования, очистки и разделения веществ.

    В настоящее время существует значительное количество методов разделения, концентрирования и очистки веществ и создаются все новые в связи с актуальностью задач получения и анализа суперчистых материалов с заданными свойствами, например, для наноэлектроники, полупроводниковой и вычислительной техники, биологических препаратов нового поколения. Наиболее распространенными из них являются:

    Ø методы испарения (перегонка, упаривание и отгонка);

    Ø озоления;

    Ø экстрагирования;

    Ø осаждения и соосаждения;

    Ø управляемой кристаллизации;

    Ø сорбционные и ионообменные методы;

    Ø электрохимические методы.

    Применение каждого из методов очистки определяется как выбранной методикой анализа, так и физико-химическими свойствами системы (агрегатное состояние компонентов, химическая и термическая устойчивость веществ, содержание определяемого компонента в исходной пробе и т. д.). Как правило в основе процесса очистки лежит либо химическая реакция (реакции осаждения, ионного обмена, окисления), либо физический процесс (диффузия, адсорбция и десорбция, испарение и конденсация) (рисунок 2.1).

    Рисунок 2.1 – общие принципы и способы разделения компонентов на фазы (концентрирования и разделения веществ).

    Учитывая многообразие способов концентрирования веществ, поясним значение некоторых терминов.

    Разделение –это операция, в результате которой компоненты, входящие в исходную смесь, отделяются друг от друга.

    Концентрирование – это процесс, в результате которого содержание определяемого или очищаемого компонента в веществе повышается, по сравнению с его исходным содержанием. Концентрирование может быть абсолютным и относительным .

    Абсолютное концентрирование – это перевод микрокомпонента (примеси) из исходного образца большого объема или массы, в новый образец с меньшим объемом (массой). Такое концентрирование происходит при процессах экстрагирования, осаждения, перегонки и т. д.



    Относительное концентрирование (обогащение) заключается в увеличении содержания интересующего компонента в исходном образце по отношению к другим компонентам или растворителю. Например, при упаривании раствора или озолении пробы.

    Испарение – процесс перехода вещества из жидкой или твердой фазы в газообразную, который осуществляется тем или иным путем. Методы испарения можно реализовать в виде перегонки и отгонки (упаривания, выпаривания и возгонки).

    Перегонка – это разделение жидких смесей, основанное на переводе летучего компонента в газовую фазу путем испарения его и последующей конденсацией.

    Конденсат – продукт, образующийся при охлаждении газовой или паровой фазы.

    Отгонка – удаление летучих компонентов из твердых веществ (порошков, кристаллов) или растворов при нагревании.

    Упаривание – метод отгонки, в процессе которого происходит удаление части растворителя и летучих примесей в следствии длительного нагрева пробы. При упаривании часть основы (обычно растворителя) остается в образце.

    Выпаривание (до суха) сопровождается полным удалением растворителя и летучих компонентов из исходного образца.

    Возгонка или сублимация – это процесс, при котором твердое вещество переводят в газовую фазу минуя стадию плавления. Продукт конденсации, образующийся в процессе возгонки называют сублиматом .

    Озоление – метод, при котором исходный образец путем нагрева переводят в минеральный остаток, называется золой . Его используют обычно при анализе различных веществ на содержание микроэлементов или общего количества органических веществ (анализ почв). Различают сухое озоление , когда пробу вещества калят в тигле при нагреве не выше 500ºС, и влажное (мокрое) . При влажном озолении исходную навеску вещества помещают в тигель и обрабатывают либо кислотами, либо ще6лочами, а образующиеся летучие продукты удаляются в процессе ее прокаливания. Озоление можно рассматривать как частный случай минерализации пробы.

    Метод перегонки (дистилляция)

    Перегонка (дистилляция) относится к группе методов, базирующихся на термическом испарении веществ, и применяется для очистки воды и разделения органических жидкостей с относительно близкими температурами кипения . Она основана на различии в летучести веществ . Сущность процесса перегонки заключается в том, что в испарителе смесь веществ (обычно раствор) нагревают выше температуры кипения наиболее летучего компонента. Образовавшаяся таким образом газовая (паровая) фаза имеет более высокую концентрацию летучего компонента, по сравнению с исходным раствором. Эту фазу затем охлаждают (конденсируют) в холодильнике, получая на его выходе конденсат (жидкость либо твердое вещество), обогащенный наиболее летучим соединением. При необходимости процесс повторяют до тех пор, пока не будет достигнута необходимая степень разделения или концентрирования компонентов.

    Процесс перегонки можно охарактеризовать количественно, рассчитав коэффициент распределения D . Пусть имеется 2-х компонентная идеальная система А + В (отсутствует межмолекулярное взаимодействие, а компоненты химически инертны по отношению друг к другу). При нагревании такой системы до температуры испарения, например компонента А , получим газовую фазу, которая находится в равновесии с оставшимся раствором. При этом газовая фаза обогатится более летучим компонентом А , а в оставшемся растворе возрастет соответственно концентрация компонента В. Молярные доли компонентов А и В в обеих фазах связаны соотношением:

    где у А и у В – молярные доли в газовой фазе; a = 1/D – коэффициент разделения (относительная летучесть); х А и х В – молярные доли компонентов в жидкой фазе. Учитывая, что x + y = 1 – сумма молярных долей компонентов в исходном растворе, и x A + x В = x; y A + y В = y, то коэффициент распределения D можно вычислить из соотношения:

    D = . (2.2)

    Формула (3.2) может быть преобразована с помощью уравнения Клаузиуса-Клапейрона в выражение для приближенного вычисления летучести компонентов:

    lga = 8,9 . (2.3)

    где Т кип (А) и Т кип (В) – температуры кипения разделяемых компонентов А и В соответственно. Из формулы 2.3 следует, что чем выше разница в температурах кипения разделяемых компонентов, тем выше степень их разделения в одностадийном процессе.

    В пищевой, фармацевтической и химической промышленности дистилляция - это один из способов водоподготовки, который применяется наряду с ионным обменом. Для аналитических целей пригодна вода либо однократной очистки (дистиллят), либо двукратной – бидистиллят . Одностадийная дистилляция обычно используется для разделении веществ со значительной разницей в температурахкипения . При этом анализируемым компонентом может обогащаться как жидкая фаза, остающаяся после дистилляции, так и газовая фаза, а значит и образующийся конденсат Этот метод непригоден для азеотропных смесей (системы, в которых состав газовой и жидкой фазы одинаковы и находятся в состоянии равновесия). В этом случае полного разделения компонентов достичь невозможно.

    Метод ступенчатой дистилляции (ректификации) осуществляют в специальных колоннах и используют при разделении на фракции многокомпонентных гомогенных смесей жидкостей с достаточно близкими температурами кипения . Он широко распространен в перерабатывающей промышленности, в частности, при получении продуктов перегонки нефти, таких как: петролейные эфиры, бензины, керосины и масла.

    При очистке продуктов с низкой термической устойчивостью, присущей для некоторых органических и биологически активных веществ, осуществляют молекулярную дистилляцию - низкотемпературная дистилляция в высоком вакууме , которую проводят при остаточном давлении 1,3 – 1,8 кПа и ниже. В этом случае процесс разделения и концентрирования может протекать либо без нагрева, либо при температурах, значительно ниже комнатной. Молекулярная дистилляция используется при производстве фармацевтических препаратов и биоактивных пищевых добавок.

    Методы отгонки.

    Отгонку делят на простую или выпаривание и возгонку (сублимацию ). При выпаривании вещества удаляются в форме готовых летучих соединений. Осуществить выпаривание можно различными способами: нагреванием снизу (водяные и песчаные бани); сверху (инфракрасные лампы), используя сушку под вакуумом (лиофильная сушка ) - для исключения потерь связанной влаги или термически неустойчивых компонентов. Выпаривание позволяет к примеру, значительно повысить концентрацию солей в растворе (получение рапы).

    Частный случай выпаривания – упаривание до суха . Этот прием применяют, когда необходимо или значительно повысить концентрацию нелетучего компонента, или растворитель и летучие примеси мешает проведению анализа. При упаривании вещество сначала длительно осторожно нагревают (выпаривают) до образования практически сухого остатка. Иногда применяют дополнительно прокаливание сухого остатка при более высокой температуре, чтобы удалить следовые количества растворителя. Качество выпаривания можно контролировать по изменению массы сухого остатка.

    Отгонка будет более эффективна, если на вещество воздействовать еще и химически с помощью реагентов – сухая и мокрая минерализация . Минерализацию образцов широко используют в элементном органическом анализе. Пробу, органическую или биологическую, помещают в трубчатую печь или автоклав, через которую продувают воздух или кислород. В процессе окисления (сжигания) ее образуются летучие соединения такие, как CO, CO 2 , N 2 , SO 2 , SO 3 , которые легко могут быть определены с помощью специальных приборов – газоанализаторов или, после селективного поглощения (адсорбции ) газов, по стандартной методике. При сухой минерализации погрешность анализа выше, чем при мокрой . Это обусловлено потерями легколетучих компонентов и отчасти нелетучих, захватываемых каплями образовавшегося аэрозоля. Снижения потерь вещества при сухой минерализации можно добиться при использовании автоклавов (устройства для нагрева при повышенном давлении).

    Мокрая минерализация заключается в воздействии на пробу минеральных кислот или щелочей в комплексе с окислителями (H 2 O 2 , KClO 3 , KMnO 4), растворение устойчивых соединений проводят в автоклавах при нагреве и повышенном давлении, а определение – в специальных камерах, соединенных с анализатором. Эффективно также применение ряда твердых, жидких и газообразных минерализаторов, способных селективно переводить некоторые труднорастворимые вещества в газовую фазу (галогены и галогеноводороды, CCl 4 , AlCl 3 , BBr 3).

    Сублимация это вариант отгонки, который заключается в разделении веществ путем перевода одного или нескольких компонентов при нагревании в газовую фазу минуя жидкую . Для этой цели применяют устройства - сублиматоры , состоящие из испарителя и зоны сублимации с более низкой температурой (вплоть до отрицательных). В зоне сублимации при конденсации газов вновь образуется твердое вещество (сублимат). Этот метод можно использовать в том случае, когда разделяемые компоненты, например, плохо растворимы или трудно плавятся. Ограниченное применение сублимации обусловлено малым количеством пригодных для этой цели матриц. Примером сублимационной очистки в аналитических целях служит отделение кристаллического иода от нелетучих примесей.

    На качество очистки при сублимации влияют размер частиц и однородность распределения компонентов в них. Поэтому более качественной будет отгонка в тщательно измельченных пробах, а также в тех, где отгоняется основное вещество (макрокомпонент) , а не примеси (микрокомпоненты ).

    Для низко температурного полного обезвоживания неустойчивых веществ применяют низкотемпературную отгонку под вакуумом – сублимационная сушка , которую можно рассматривать как вариант лиофильной сушки, выполняемой в болеежестком режиме.

    Метод экстрагирования.

    Метод экстракционного разделения (экстракция ) широко применяется не только в химическом анализе, но и на производстве, так как позволяет сконцентрировать анализируемое вещество в небольшом объеме раствора. Процесс экстракции основан на избирательном извлечении одного или нескольких компонентов из смеси жидких или твердых фаз с помощью органического растворителя (экстрагента) не смешивающегося с водой. В основе процесса экстракции - различие растворимости компонентов смеси в водной и органическойфазах . В органических веществах (спиртах, эфирах, бензинах и т.д.) хорошо растворяются многие неорганические соли (нитраты, хлориды, роданиды) и комплексные соединения.

    Более эффективно извлечение происходит при применении смеси экстрагентов. Явление возрастания степени извлечения при воздействии смеси экстрагентов называют синергизмом. Степень извлечения можно также повысить, добавляя в экстрагент экстракционный реагент, например, дитизон или оксихинолин, формирующие комплексы со многими катионами металлов. В результате проведения экстракции получается экстракт , который может быть как в виде раствора, так и сухого вещества (сухие экстракты ). Сухие экстракты обычно образуются из жидких путем их высушивания каким-либо способом.

    К основным понятиям этого метода относят:

    Ø реэкстракция – процесс извлечения выделяемого компонента из экстракта в водную или иную фазу;

    Ø реэкстрагент – раствор реагента (чаще водный), используемый для извлечении вещества из экстракта;

    Ø соэкстрагент – органический или иной растворитель, применяемый в смеси с основным экстрагентом с целью повышения селективности процесса или степени экстракции;

    Ø синергизм – существенное повышение степени извлечения (экстракции) при использовании смеси экстрагентов, по сравнению с действием каждого из них по-отдельности;

    Ø экстрагент – органический или иной растворитель, извлекающий компонент из водного раствора;

    Ø экстракционный реагент – составная часть экстрагента, реагент, образующий с извлекаемым веществом хорошо растворимое в экстрагенте соединение, чаще всего - органический комплекс;

    Ø экстракт – органическая фаза, содержащая выделяемый компонент;

    Ø экстрактор – аппарат для проведения экстракции.

    Конструкции экстракторов достаточно разнообразны (рис. 2.2) и подбираются в зависимости от условий проведения процесса и применяемых реагентов.

    Рисунок 2.2 – схемы экстракторов различного назначения

    (в – водная фаза; о – органический растворитель):

    а – делительные воронки (случай, когда плотность экстрагента выше, чем водной фазы); б – прибор непрерывной экстракции (при плотность экстрагента ниже, чем воды).

    Различают: периодическую экстракцию (выполняется отдельными порциями экстрагента), непрерывную (при постоянном перемещении фаз друг относительно друга, при этом водная фаза обычно неподвижна) и противоточную , где органическая фаза постоянно перемещается через серию экстракционных трубок, содержащих свежие порции водного раствора. В качестве простейшего экстрактора можно использовать делительную воронку с двумя кранами (рис. 2.2 – а), которая применяется для выполнения периодической экстракции . После заполнения воронки водно-органической смесью раствора, ее энергично встряхивают и дают отстояться, через нижний кран осторожно удаляют водный раствор (если плотность органического реагента меньше, чем водного), стараясь, чтобы экстракт остался в воронке. Разделение фракций протекает с высокой скоростью в течении 1 – 3 минут. Если плотность органической фазы выше, чем водной, то в нижней части воронки будет скапливаться экстракт, который затем также осторожно удаляется.

    error: Content is protected !!